發布成功
贊賞金額:
支付金額:5元
支付方式:
贊賞成功!
你的贊賞是對作者最大的肯定~?
各種接法的對比
在比較之前,需要對實際的光耦TLP521的幾個特性曲線作一下分析。首先是Ic-Vce曲線,如圖5,圖6所示
由圖5、圖6可知,當If小于5mA時,If的微小變化都將引起Ic與Vce的劇烈變化,光耦的輸出特性曲線平緩。這時如果將光耦作為電源反饋網絡的一部分,其傳遞函數增益非常大。對于整個系統來說,一個非常高的增益容易引起系統不穩定,所以將光耦的靜態工作點設置在電流If小于5mA是不恰當的,設置為5~10mA較恰當。
此外,還需要分析光耦的Ic-If曲線,如圖7所示。
由圖7可以看出,在電流If小于10mA時,Ic-If基本不變,而在電流If大于10mA之后,光耦開始趨向飽和,Ic-If的值隨著If的增大而減小。對于一個電源系統來說,如果環路的增益是變化的,則將可能導致不穩定,所以將靜態工作點設置在If過大處(從而輸出特性容易飽和),也是不合理的。需要說明的是,Ic-If曲線是隨溫度變化的,但是溫度變化所影響的是在某一固定If值下的Ic值,對Ic-If比值基本無影響,曲線形狀仍然同圖7,只是溫度升高,曲線整體下移,這個特性從Ic-Ta曲線(如圖8所示)中可以看出。
由圖8可以看出,在If大于5mA時,Ic-Ta曲線基本上是互相平行的。
根據上述分析,以下針對不同的典型接法,對比其特性以及適用范圍。本研究以實際的隔離半橋輔助電源及反激式電源為例說明。
第1種接法中,接到電壓誤差放大器輸出端的電壓是外部電壓經電阻R4降壓之后得到,不受電壓誤差放大器電流輸出能力影響,光耦的工作點選取可以通過其外接電阻隨意調節。
按照前面的分析,令電流If的靜態工作點值大約為10mA,對應的光耦工作溫度在0~100℃變化,值在20~15mA之間。一般PWM芯片的三角波幅值大小不超過3V,由此選定電阻R4的大小為670Ω,并同時確定TL431的3腳電壓的靜態工作點值為12V,那么可以選定電阻R3的值為560Ω。電阻R1與R2的值容易選取,這里取為27k與4.7k。電阻R5與電容C1為PI補償,這里取為3k與10nF。
實驗中,半橋輔助電源輸出負載為控制板上的各類控制芯片,加上多路輸出中各路的死負載,最后的實際功率大約為30w。實際測得的光耦4腳電壓(此電壓與芯片三角波相比較,從而決定驅動占空比)波形,如圖9所示。對應的驅動信號波形,如圖10所示。
圖10的驅動波形有負電壓部分,是由于上、下管的驅動繞在一個驅動磁環上的緣故。可以看出,驅動信號的占空比比較大,大約為0.7。
對于第2種接法,一般芯片內部的電壓誤差放大器,其最大電流輸出能力為3mA左右,超過這個電流值,誤差放大器輸出的最高電壓將下降。所以,該接法中,如果電源穩態占空比較大,那么電流Ic比較小,其值可能僅略大于3mA,對應圖7,Ib為2mA左右。由圖6可知,Ib值較小時,微小的Ib變化將引起Ic劇烈變化,光耦的增益非常大,這將導致閉環網絡不容易穩定。而如果電源穩態占空比比較小,光耦的4腳電壓比較小,對應電壓誤差放大器的輸出電流較大,也就是Ic比較大(遠大于3mA),則對應的Ib也比較大,同樣對應于圖6,當Ib值較大時,對應的光耦增益比較適中,閉環網絡比較容易穩定。
同樣,對于上面的半橋輔助電源電路,用接法2代替接法1,閉環不穩定,用示波器觀察光耦4腳電壓波形,有明顯的振蕩。光耦的4腳輸出電壓(對應于UC3525的誤差放大器輸出腳電壓),波形如圖11所示,可發現明顯的振蕩。這是由于這個半橋電源穩態占空比比較大,按接法2則光耦增益大,系統不穩定而出現振蕩。
實際上,第2種接法在反激電路中比較常見,這是由于反激電路一般都出于效率考慮,電路通常工作于斷續模式,驅動占空比比較小,對應光耦電流Ic比較大,參考以上分析可知,閉環環路也比較容易穩定。
以下是另外一個實驗反激電路,工作在斷續模式,實際測得其光耦4腳電壓波形,如圖12所示。實際測得的驅動信號波形,如圖13所示,占空比約為0.2。
因此,在光耦反饋設計中,除了要根據光耦的特性參數來設置其外圍參數外,還應該知道,不同占空比下對反饋方式的選取也是有限制的。反饋方式1、3適用于任何占空比情況,而反饋方式2、4比較適合于在占空比比較小的場合使用。
本研究列舉了4種典型光耦反饋接法,分析了各種接法下光耦反饋的原理以及各種限制因素,對比了各種接法的不同點。通過實際半橋和反激電路測試,驗證了電路工作的占空比對反饋方式選取的限制。最后對光耦反饋進行總結,對今后的光耦反饋設計具有一定的參考價值。