亚洲电影av-亚洲第一综合网站-亚洲第一在线-亚洲第一影院-成年人视频在线免费-成年人视频在线观看免费

電子方案開發供應鏈平臺
一鍵發布任務
獲取驗證碼
返回

發布成功


贊賞作者

贊賞金額:

  • ¥2
  • ¥5
  • ¥10
  • ¥50
  • ¥100
  • ¥200

支付金額:5

支付方式:

微信支付

贊賞成功!
你的贊賞是對作者最大的肯定~?

當前位置 : 首頁 > 方案訊 > 方案訊詳情
270V共模抑制雙向隔離式高端電流檢測電路設計
發布時間:2012-11-27 閱讀量:1082 來源: 作者:
導讀:本文所描述的電路能夠在直流電壓高達±270 V的來源上監控雙向電流,且線性誤差小于1%。負載電流通過一個電路外部的分流電阻。分流電阻值應適當選擇,使得在最大負載電流時分流電壓約為100 mV。

電路功能與優勢

圖1所示電路能夠在直流電壓高達±270 V的來源上監控雙向電流,且線性誤差小于1%。負載電流通過一個電路外部的分流電阻。分流電阻值應適當選擇,使得在最大負載電流時分流電壓約為100 mV。

AD629放大器精確測量和緩沖(G = 1)小差分輸入電壓,并抑制最高270 V的高共模電壓。

雙通道AD8622用于將AD629的輸出放大100倍。AD8475漏斗放大器則對信號進行衰減(G = 0.4),將其從單端轉換成差分形式并進行電平轉換,使其滿足AD7170 Σ-Δ型ADC的模擬輸入電壓范圍要求。

電隔離由四通道隔離器ADuM5402提供。這不僅是為了提供保護,而且還可將下游電路與高共模電壓隔離開來。除了隔離輸出數據以外,數字隔離器ADuM5402還為電路提供+5.0 V隔離電源。

AD7170的測量結果利用一個簡單的雙線SPI兼容串行接口,以數字代碼形式提供。

這一器件組合實現了一款精確的高壓正負供電軌電流檢測解決方案,具有器件數量少、低成本、低功耗的特點。

高共模電壓雙向隔離式電流監控器(未顯示所有連接和去耦)
圖1 高共模電壓雙向隔離式電流監控器(未顯示所有連接和去耦)

電路描述

該電路針對最大負載電流IMAX下100 mV的滿量程分流電壓而設計。因此,分流電阻值為RSHUNT = (500 mV)/(IMAX).

圖2所示的AD629是一款內置薄膜電阻的差動放大器,支持最高±270 V的連續共模信號,并可提供高達±500 V的瞬變保護。當REF(+)和REF(-)接地時,該器件會將+IN引腳的信號衰減20倍,然后以20倍噪聲增益放大信號,從而在輸出端恢復原始幅度。

AD629高共模電壓差動放大器
圖2  AD629高共模電壓差動放大器

在500 Hz時,AD629A的最小共模抑制比(CMRR)為77 dB,AD629B。

為了維持理想的共模抑制性能,需要滿足幾項重要條件。首先,器件抑制這些共模信號的能力由電源電壓決定,如圖3所示。如果無法實現足夠電壓的雙電源,則共模抑制性能會下降。

AD629共模電壓范圍與電源電壓的關系
圖3  AD629共模電壓范圍與電源電壓的關系

其次,AD629應僅采用內部匹配薄膜電阻在單位增益模式下工作。若使用外部電阻來更改增益,則會因失配誤差而導致共模抑制性能下降。

AD8622是一款CMOS低功耗、精密、雙通道、軌到軌輸出運算放大器,主要用于放大目標信號。

通過級聯兩個增益為–10的反相增益級,AD629的100 mV滿量程輸出會放大100倍,從而獲得10 V滿量程信號。這些值可以是正值,也可以是負值,具體取決于電流方向。

AD8622的雙電源允許輸入和輸出信號在高于地和低于地之間擺動,以便測量雙向輸入電流。

在轉換成數字字之前的信號鏈最后一級上,AD8622輸出電壓接受調理,以適合ADC的模擬輸入電壓范圍。

圖4所示的“漏斗放大器”AD8475提供兩個可選衰減系數(0.4和0.8)。此外,信號會轉換成差分形式,輸出端的共模電壓則由VOCM引腳上的電壓決定。采用5 V單電源供電時,模擬輸入電壓范圍為±12.5 V(對于單端輸入)。

AD8475漏斗放大器
圖4  AD8475漏斗放大器

如圖1所示,輸出共模電壓由電阻分壓器設置為2.5 V,而電阻分壓器則由ADR435的5 V基準輸出驅動。

該系統的主要噪聲源是AD629在0.1 Hz至10 Hz帶寬范圍內的15 μV p-p輸出噪聲。對于100 mV滿量程信號,無噪聲代碼分辨率為:


AD8622的輸出噪聲僅為0.2 μV p-p,與AD629相比可忽略不計。AD8475的輸出噪聲為2.5 μV p-p,當滿量程信號電平為4 V p-p時同樣可忽略不計。

注意,AD7170的電源電壓由四通道隔離器ADuM5402的隔離電源輸出(+5.0 VISO)提供。

AD7170的基準電壓由 ADR435精密XFET®基準電壓源提供。ADR435的初始精度為±0.12%(A級),典型溫度系數為2 ppm/°C。ADR435具有7.0 V至18.0 V的寬工作范圍,采用+15.0 V供電軌作為電源。

雖然AD7170 VDD和REFIN(+)都可以采用5.0 V電源,但使用獨立的基準電壓源可提供更高的精度。

AD7170 ADC的輸入電壓在ADC的輸出端轉換為偏移二進制碼。ADuM5402為DOUT數據輸出、SCLK輸入和PDRST輸入提供隔離。雖然隔離器是可選器件,但建議使用該器件來保護下游數字電路,使其不受高共模電壓影響,以免發生故障。

代碼在PC中利用SDP硬件板和LabVIEW軟件進行處理。

圖5比較了LabVIEW記錄的ADC輸出端代碼與基于理想系統而計算的理想代碼。圖中顯示該電路如何在整個輸入電壓范圍內(−100 mV至+100 mV)實現不足0.5%的端點線性誤差。如果需要,可以使用軟件校準消除失調誤差和增益誤差。

實際代碼、理想代碼、誤差百分比與分流電壓的關系圖
圖5  實際代碼、理想代碼、誤差百分比與分流電壓的關系圖


點擊下載全文(pdf):http://www.tiglon.com.cn/data/datainfo/id/6765

文章評論

您需要登錄才可以對文章進行評論。

沒有賬號?立即注冊

最新活動
意見反饋
取消