發布成功
贊賞金額:
支付金額:5元
支付方式:
贊賞成功!
你的贊賞是對作者最大的肯定~?
這是一個模擬世界。無論汽車、微波爐還是手機,所有電子設備都必須以某種方式與“真實”世界交互。為此,電子設備必須能夠將真實世界的測量結果 (速度、壓力、長度、溫度) 映射到電子世界中的可測的量 (電壓)。當然,要測量電壓,您需要一個衡量標準。該標準就是基準電壓。對系統設計人員而言,問題不在于是否需要基準電壓源,而是使用何種基準電壓源?
基準電壓源只是一個電路或電路元件,只要電路需要,它就能提供已知電位。這可能是幾分鐘、幾小時或幾年。如果產品需要采集真實世界的相關信息,例如電池電壓或電流、功耗、信號大小或特性、故障識別等,那么必須將相關信號與一個標準進行比較。每個比較器、ADC、DAC 或檢測電路必須有一個基準電壓源才能完成上述工作 (圖 1)。將目標信號與已知值進行比較,可以準確量化任何信號。
基準電壓源規格
基準電壓源有很多形式并提供不同的特性,但歸根結底,精度和穩定性是基準電壓源最重要的特性,因為其主要作用是提供一個已知輸出電壓。相對于該已知值的變化是誤差。基準電壓源規格通常使用下述定義來預測其在某些條件下的不確定性。
圖 1.ADC 的基準電壓源的典型用法
表 1.高性能基準電壓源規格
初始精度
在給定溫度 (通常為 25°C) 下測得的輸出電壓的變化。雖然不同器件的初始輸出電壓可能不同,但如果它對于給定器件是恒定的,那么很容易將其校準。
溫度漂移
該規格是基準電壓源性能評估使用最廣泛的規格,因為它表明輸出電壓隨溫度的變化。溫度漂移是由電路元件的缺陷和非線性引起的,因此常常是非線性的。
對于許多器件,溫度漂移 TC (以 ppm/°C 為單位) 是主要誤差源。對于具有一致漂移的器件,校準是可行的。關于溫度漂移的一個常見誤解是認為它是線性的。這導致了諸如“器件在較小溫度范圍內的漂移量會較少”之類的觀點,然而事實常常相反。TC 一般用“黑盒法”指定,以便讓人了解整個工作溫度范圍內的可能誤差。它是一個計算值,僅基于電壓的最小值和最大值,并不考慮這些極值發生的溫度。
對于在指定溫度范圍內具有非常好線性度的基準電壓源,或者對于那些未經仔細調整的基準電壓源,可以認為最差情況誤差與溫度范圍成比例。這是因為最大和最小輸出電壓極有可能是在最大和最小工作溫度下得到的。然而,對于經過仔細調整的基準電壓源 (通常通過其非常低的溫度漂移來判定),其非線性特性可能占主導地位。
例如,指定為 100ppm/°C 的基準電壓源傾向于在任何溫度范圍內都有相當好的線性度,因為元件不匹配引起的漂移完全掩蓋了其固有非線性。相反,指定為 5ppm/°C 的基準電壓源,其溫度漂移將以非線性為主。
圖 2.基準電壓源溫度特性
基準電壓源有很多形式并提供不同的特性,但歸根結底,精度和穩定性是基準電壓源最重要的特性,因為其主要作用是提供一個已知輸出電壓。相對于該已知值的變化是誤差。基準電壓源規格通常用來預測其在某些條件下的不確定性。
這在圖 2 所示的輸出電壓與溫度特性的關系中很容易看出。注意,其中表示了兩種可能的溫度特性。未補償的帶隙基準電壓源表現為拋物線,最小值在溫度極值處,最大值在中間。此處所示的溫度補償帶隙基準電壓源 (如 LT1019) 表現為“S”形曲線,其最大斜率接近溫度范圍的中心。
在后一種情況下,非線性加劇,從而降低了溫度范圍內的總體不確定性。
溫度漂移規格的最佳用途是計算指定溫度范圍內的最大總誤差。除非很好的理解了溫度漂移特性,否則一般不建議計算未指定溫度范圍內的誤差。
長期穩定性
該規格衡量基準電壓隨時間變化的趨勢,與其他變量無關。初始偏移主要由機械應力的變化引起,后者通常來源于引線框架、裸片和模塑化合物的膨脹率的差異。這種應力效應往往具有很大的初始偏移,爾后隨著時間推移,偏移會迅速減少。初始漂移還包含電路元件電氣特性的變化,其中包括器件特性在原子水平上的建立。更長期的偏移是由電路元件的電氣變化引起的,常常稱之為“老化”。與初始漂移相比,這種漂移傾向于以較低速率發生,并且會隨著時間推移變化速率會進一步降低。因此,它常常用“漂移/√khr”來表示。在較高溫度下,基準電壓源的老化速度往往也更快。
熱遲滯
這一規格常常被忽視,但它也可能成為主要誤差源。它本質上是機械性的,是熱循環導致芯片應力改變的結果。經過很大的溫度循環之后,在給定溫度下可以觀察到遲滯,其表現為輸出電壓的變化。它與溫度系數和時間漂移無關,會降低初始電壓校準的有效性。
在隨后的溫度循環期間,大多數基準電壓源傾向于在標稱輸出電壓附近變化,因此熱遲滯通常以可預測的最大值為限。每家制造商都有自己指定此參數的方法,因此典型值可能產生誤導。估算輸出電壓誤差時,數據手冊 (如 LT1790 和 LTC6652) 中提供的分布數據會更有用。
圖 3.分流基準電壓源
圖 4.串聯基準電壓源
其他規格
根據應用要求,其他可能重要的規格包括:
■電壓噪聲
■線性調整率/PSRR
■負載調整率
■壓差
■電源電壓范圍
■電源電流
基準電壓源類型
基準電壓源主要有兩類:分流和串聯。串聯和分流基準電壓源參見表 2。
分流基準電壓源
分流基準電壓源是 2 端器件,通常設計為在指定電流范圍內工作。雖然大多數分流基準電壓源是帶隙類型并提供多種電壓,但可以認為它們與齊納二極管型一樣易用,事實也確實如此。
最常見的電路是將基準電壓源的一個引腳連接到地,另一個引腳連接到電阻。電阻的另一個引腳連接到電源。這樣,它實質上變成一個三端電路。基準電壓源和電阻的公共端是輸出。電阻的選擇必須適當,使得在整個電源范圍和負載電流范圍內,通過基準電壓源的最小和最大電流都在額定范圍內。如果電源電壓和負載電流變化不大,這些基準電壓源很容易用于設計。如果其中之一或二者可能發生重大變化,則所選電阻必須適應這種變化,通常會導致電路實際耗散功率比標稱情況所需大得多。從這個意義上講,它可以被認為像 A 類放大器一樣運作。
分流基準電壓源的優點包括:設計簡單,封裝小,在寬電流和負載條件下具有良好的穩定性。此外,它很容易設計為負基準電壓源,并且可以配合非常高的電源電壓使用 (因為外部電阻會分擔大部分電位),或配合非常低的電源電壓使用 (因為輸出可以僅低于電源電壓幾毫伏)。ADI公司提供的分流產品包括 LT1004、LT1009、LT1389、LT1634、LM399 和 LTZ1000。典型分流電路如圖 3 所示。
串聯基準電壓源
串聯基準電壓源是三 (或更多)端器件。它更像低壓差 (LDO) 穩壓器,因此其許多優點是相同的。最值得注意的是,其在很寬的電源電壓范圍內消耗相對固定的電源電流,并且只在負載需要時才傳導負載電流。這使其成為電源電壓或負載電流有較大變化的電路的理想選擇。它在負載電流非常大的電路中特別有用,因為基準電壓源和電源之間沒有串聯電阻。
ADI公司提供的串聯產品包括 LT1460、LT1790、LT1461、LT1021、LT1236、LT1027、LTC6652、LT6660 等等。LT1021 和 LT1019 等產品可以用作分流或串聯基準電壓源。串聯基準電壓源電路如圖 4 所示。
圖 5.設計帶隙電路提供理論上為零的溫度系數
圖 6.200mV 基準電壓源電路
基準電壓源電路
有許多方法可以設計基準電壓源 IC。每種方法都有特定的優點和缺點。
基于齊納二極管的基準電壓源
深埋齊納型基準電壓源是一種相對簡單的設計。齊納 (或雪崩) 二極管具有可預測的反向電壓,該電壓具有相當好的溫度穩定性和非常好的時間穩定性。如果保持在較小溫度范圍內,這些二極管通常具有非常低的噪聲和非常好的時間穩定性,因此其適用于基準電壓變化必須盡可能小的應用。
與其他類型的基準電壓源電路相比,這種穩定性可歸因于元件數量和芯片面積相對較少,而且齊納元件的構造很精巧。然而,初始電壓和溫度漂移的變化相對較大,這很常見。可以增加電路來補償這些缺陷,或者提供一系列輸出電壓。分流和串聯基準電壓源均使用齊納二極管。
LT1021、LT1236 和 LT1027 等器件使用內部電流源和放大器來調節齊納電壓和電流,以提高穩定性,并提供多種輸出電壓,如 5V、7V 和 10V。這種附加電路使齊納二極管與很多應用電路兼容性更好,但需要更大的電源裕量,并可能引起額外的誤差。
另外,LM399 和 LTZ1000 使用內部加熱元件和附加晶體管來穩定齊納二極管的溫度漂移,實現溫度和時間穩定性的最佳組合。此外,這些基于齊納二極管的產品具有極低的噪聲,可提供最佳性能。LTZ1000 的溫度漂移為 0.05ppm/°C,長期穩定性為 2μV/√kHr,噪聲為 1.2μVP-P。為了便于理解,以實驗室儀器為例,噪聲和溫度引起的 LTZ1000 基準電壓的總不確定性只有大約 1.7ppm,加上老化引起的每月不到 1ppm。
帶隙基準電壓源
齊納二極管雖然可用于制作高性能基準電壓源,但缺乏靈活性。具體而言,它需要 7V 以上的電源電壓,而且提供的輸出電壓相對較少。相比之下,帶隙基準電壓源可以產生各種各樣的輸出電壓,電源裕量非常小——通常小于 100mV。帶隙基準電壓源可設計用來提供非常精確的初始輸出電壓和很低的溫度漂移,無需耗時的應用中校準。
帶隙操作基于雙極結型晶體管的基本特性。圖 5 所示為一個基本帶隙基準電壓源——LT1004 電路的簡化版本。可以看出,一對不匹配的雙極結型晶體管的 VBE 具有與溫度成正比的差異。這種差異可用來產生一個電流,其隨溫度線性上升。當通過電阻和晶體管驅動該電流時,如果其大小合適,晶體管的基極-發射極電壓隨溫度的變化會抵消電阻兩端的電壓變化。雖然這種抵消不是完全線性的,但可以通過附加電路進行補償,使溫度漂移非常低。
表 2.ADI公司提供的基準電壓源
基本帶隙基準電壓源背后的數學原理很有意思,因為它將已知溫度系數與獨特的電阻率相結合,產生理論上溫度漂移為零的基準電壓。圖 5 顯示了兩個晶體管,經調整后,Q10 的發射極面積為 Q11 的 10 倍,而 Q12 和 Q13 的集電極電流保持相等。這就在兩個晶體管的基極之間產生一個已知電壓:
其中,k 為玻爾茲曼常數,單位為 J/K (1.38×10-23);T 為開氏溫度 (273 + T (°C));q 為電子電荷,單位為庫侖 (1.6x10-19)。在 25°C 時,kT/q 的值為 25.7mV,正溫度系數為 86μV/°C。
?VBE 為此電壓乘以 ln(10) 或 2.3,25°C時 電壓約為 60mV,溫度系數為 0.2mV/°C。
將此電壓施加到基極之間連接的 50k 電阻,產生一個與溫度成比例的電流。該電流偏置二極管 Q14,25°C 時其電壓為 575mV,溫度系數為 -2.2mV/°C。電阻用于產生具有正溫度系數的壓降,其施加到 Q14 二極管電壓上,從而產生大約 1.235V 的基準電壓電位,理論上溫度系數為 0mV/°C。這些壓降如圖 5 所示。電路的平衡提供偏置電流和輸出驅動。
ADI公司生產各種各樣的帶隙基準電壓源,包括小型廉價精密串聯基準電壓源 LT1460、超低功耗分流基準電壓源 LT1389 以及超高精度、低漂移基準電壓源 LT1461 和 LTC6652。可用輸出電壓包括 1.2V、1.25V、2.048V、2.5V、3.0V、3.3V、4.096V、4.5V、5V 和 10V。這些基準電壓可以在很寬范圍的電源和負載條件下提供,并且電壓和電流開銷極小。產品可能具有非常高的精度,例如 LT1461、LT1019、LTC6652 和 LT1790;尺寸可能非常小,例如 LT1790 和 LT1460 (SOT23),或采用 2mm×2mm DFN 封裝的 LT6660;或者功耗非常低,例如 LT1389,其功耗僅需 800nA。雖然齊納基準電壓源在噪聲和長期穩定性方面往往具有更好的性能,但新的帶隙基準電壓源正在縮小差距,例如 LTC6652 的峰峰值噪聲 (0.1Hz 至 10Hz) 為 2ppm。
圖 7.LT6700 支持與低至 400mV 的閾值進行比較
分數帶隙基準電壓源
這種基準電壓源基于雙極晶體管的溫度特性設計,但輸出電壓可以低至幾毫伏。它適用于超低電壓電路,特別是閾值必須小于常規帶隙電壓 (約 1.2V) 的比較器應用。
圖 6 所示為 LM10 的核心電路,同正常帶隙基準電壓源相似,其中結合了與溫度成正比和成反比的元件,以獲得恒定的 200mV 基準電壓。分數帶隙基準電壓源通常使用 ΔVBE 產生一個與溫度成正比的電流,使用 VBE 產生一個與溫度成反比的電流。二者以適當的比例在一個電阻元件中合并,以產生不隨溫度變化的電壓。電阻大小可以更改,從而改變基準電壓而不影響溫度特性。這與傳統帶隙電路的不同之處在于,分數帶隙電路合并電流,而傳統電路傾向于合并電壓,通常是基極-發射極電壓和具有相反 TC 的 I?R。
像 LM10 電路這樣的分數帶隙基準電壓源在某些情況下同樣是基于減法。LT6650 具有 400mV 的此類基準電壓,并且配有一個放大器。因此,可以通過改變放大器的增益來改變基準電壓,并提供一個緩沖輸出。使用這種簡單電路可以產生低于電源電壓 0.4V 至幾毫伏的任何輸出電壓。
LT6700 (圖 7) 和 LT6703 是集成度更高的解決方案,其將 400mV 基準電壓源與比較器相結合,可用作電壓監控器或窗口比較器。400mV 基準電壓源可以監控小輸入信號,從而降低監控電路的復雜性;它還能監控采用非常低電源電壓工作的電路元件。如果閾值較大,可以添加一個簡單的電阻分壓器 (圖 8)。這些產品均采用小尺寸封裝 (SOT23),功耗很低 (低于 10μA),支持寬電源范圍 (1.4V 至 18V)。此外,LT6700 提供 2mm x 3mm DFN 封裝,LT6703 提供 2mm x 2mm DFN 封裝。
圖 8.通過輸入電壓分壓來設置較高閾值
選擇基準電壓源
了解所有這些選項之后,如何為應用選擇恰當的基準電壓源呢?以下是一些用來縮小選擇范圍的竅門:
■電源電壓是否非常高?選擇分流基準電壓源。
■電源電壓或負載電流的變化范圍是否很大?選擇串聯基準電壓源。
■是否需要高功效比?選擇串聯基準電壓源。
■確定實際溫度范圍。對于各種溫度范圍,包括 0°C 至 70°C、-40°C 至 85°C 和 -40°C 至 125°C,ADI公司提供規格和工作性能保證。
■精度要求應切合實際。了解應用所需的精度非常重要。這有助于確定關鍵規格。考慮到這一要求,將溫度漂移乘以指定溫度范圍,加上初始精度誤差、熱遲滯和預期產品壽命期間的長期漂移,減去任何將在出廠時校準或定期重新校準的項,便得到總體精度。對于要求最苛刻的應用,還可以增加噪聲、電壓調整率和負載調整率誤差。例如,一個基準電壓源的初始精度誤差為 0.1% (1000ppm),-40°C 至 85°C 范圍內的溫度漂移為 25ppm/°C,熱遲滯為 200ppm,峰峰值噪聲為 2ppm,時間漂移為 50ppm/√kHr,則在電路建成時總不確定性將超過 4300ppm。在電路通電后的前 1000 小時,這種不確定性增加 50ppm。初始精度可以校準,從而將誤差降低至 3300ppm + 50ppm ? √(t/1000 小時)。
ADI公司提供廣泛的基準電壓源產品,包括串聯和分流基準電壓源——采用齊納二極管、帶隙和其他方案。基準電壓源有多種性能和溫度等級,以及幾乎所有可能的封裝類型。
■實際電源范圍是什么?最大預期電源電壓是多少?是否存在基準電壓源 IC 必須承受的故障情況,例如電池電源切斷或熱插拔感應電源尖峰等?這可能會顯著減少可選擇的基準電壓源數量。
■基準電壓源的功耗可能是多少?基準電壓源往往分為幾類:大于 1mA,~500μA,<300μA,<50μA,<10μA,<1μA。
■負載電流有多大?負載是否會消耗大量電流或產生基準電壓源必須吸收的電流?很多基準電壓源只能為負載提供很小電流,很少基準電壓源能夠吸收大量電流。負載調整率規格可以有效說明這個問題。
■安裝空間有多少?基準電壓源的封裝多種多樣,包括金屬帽殼、塑料封裝 (DIP、SOIC、SOT) 和非常小的封裝,例如采用 2mm x 2mm DFN 的 LT6660。人們普遍認為,較大封裝的基準電壓源因機械應力引起的誤差要小于較小封裝的基準電壓源。雖然確有某些基準電壓源在使用較大封裝時性能更好,但有證據表明,性能差異與封裝大小沒有直接關系。更有可能的是,由于采用較小封裝的產品使用的芯片較小,所以必須對性能進行某種取舍以適應芯片上的電路。通常,封裝的安裝方法對性能的影響比實際封裝還要大,密切注意安裝方法和位置可以最大限度地提高性能。此外,當 PCB 彎曲時,占位面積較小的器件相比占位面積較大的器件,應力可能更小。詳細討論參見ADI公司應用筆記 AN82“理解和應用基準電壓源”。
結論
ADI公司提供廣泛的基準電壓源產品,包括串聯和分流基準電壓源,設計方案有齊納二極管、帶隙和其他類型。基準電壓源有多種性能和溫度等級,以及幾乎所有已知的封裝類型。從最高精度產品到小型廉價產品,應有盡有。憑借龐大的基準電壓源產品庫,ADI公司的基準電壓源可滿足幾乎所有應用的需求。另請參見ADI公司應用筆記 AN82“了解和應用基準電壓源”。
歡迎工程師或FAE來投稿,凡是未經發布的首發原創稿必有重金酬謝!投稿請聯系包工頭(微信ID:kuaibao52)