發布成功
贊賞金額:
支付金額:5元
支付方式:
贊賞成功!
你的贊賞是對作者最大的肯定~?
有些主張與此相反,認為傳統儀器在測試與測量行業仍然是一個重要的、逐漸增多的部件。雖然特定的通信接口(GPIB,RS - 232等)可能會隨著時間的推移而過時,但是在系統中單獨使用或與其它SMU集成使用的基于儀器的SMU,通常為寬范圍需求的應用提供最快、最準確、最靈活的解決方案。“部件”SMU往往犧牲他們的性能以提供一個特定的外形因子。
最寬的可用功率和信號范圍
針對多類型裝置的測試,期望測試設備具有工作在寬范圍信號等級的能力。例如,功率MOSFET導通時的電阻非常低,通過極大的電流,但是關斷時的電阻非常高,并允許流過幾乎為零的電流。MOSFET處于開通狀態時,電流高達幾十安培,關斷時電流可能小于納安培。功率二極管和高亮度發光二極管具有相似的動態范圍要求,其全部特性也相似。對于這類器件,當施加的正向偏置電壓低于閾值電壓時,流過器件的電流非常低。當電壓從0V至閾值電壓掃描時,器件的電流從亞納安范圍上升到毫安級。當偏置電壓達到并超過閾值電壓時,測試電流快速增加,達到幾十甚至幾百安培,這個電流值取決于設備。期望測試設備能在寬范圍內具有精確測量的能力,這樣可以減少所需測試設備的數量,從而降低系統的復雜性和成本。
吉時利數字源表®儀器結合了大部分單一儀器最寬范圍信號的最大能力。型號2651A高功率源表可提供高達200W的直流電源和2000W的脈沖功率。它可以測量高達50A的電流,具有最大分辨率為1pA的測量能力。型號2636A動態范圍上領先于行業,具有測量10A降至1fA信號的能力,提供160位電流分辨率。
一些基于SMU儀器的競爭對手宣稱,型號2636A雙通道系統源表儀器具有相同的動態覆蓋范圍,測量10A降至10fA的信號。然而,當比較每一個SMU(圖2)測量范圍時,很明顯型號2636A在電流幅值上比競爭產品低兩個數量級。這意味著型號2636A不是必須依賴其測量范圍的最低有效位和最低精度位來實現真正的寬動態范圍。對于儀器用戶,在低電流測量的準確度方面提供了更大的信心。
部件SMU的供應商也宣稱他們的寬范圍覆蓋性。然而,這些外形因子限制了他們的動態范圍,使其比基于SMU的Keithley儀器小幾十倍。在高端范圍,他們受限于設備能夠提供多大的功率,大多數部件SMU最大輸出100mA的電流。在低端范圍,對于各種實際的低壓測量,所有設計在較小空間、具有不充分屏蔽的線路的電磁干擾會產生過多的電噪聲。結果就是通常看不到部件SMU的任何電流低于10微安。
最快的模數轉換器
測試設備制造商總是盡力推動從SMU每秒讀出更多的讀數。SMU的數字引擎得到升級,通信信道的帶寬增加,但最終提高速度最有效的方法就是降低測量本身的時間。由于卓越的抗噪能力,大多數SMU使用積分模數轉換器(ADC)來進行測量,并可以更好的獲得精確的高分辨率結果。然而,從積分ADC得到的測量的質量直接與時間相關,因為它被迫運行的很快,因此測量的質量被降低。
圖3解釋了型號2651A高數字化ADC的能力。此ADC使用400個采樣和一微秒的時間間隔,使得它可以完整捕獲全部300微秒50A的脈沖。有了這樣的功能,型號2651A不需要額外的測試設備,也可以準確地捕捉設備的瞬態及熱效應。
多通道的可擴展性
無論單個SMU可能的速度有多快,當集成到系統中性能降低的話,它的優點也被浪費。部件SMU本質上較少受這個問題的影響,這要歸功于他們的高速及通過PCI或PCIe背板(133MB / S的PCI 250MB / S的PCIe x1)連接到主機系統的低延遲。相反地,基于儀器的SMU是通過外部總線如GPIB和主機系統進行通信,GPIB的速度只是背板速度(1.8MB / s標準)的一小部分。吉時利的工程師在設計2600A系列源表儀器時意識到了這點,并通過使用測試腳本處理器(TSP®)使其脫離主機系統自主運作,并通過稱為TPS-Link®的技術的高速、低延遲總線進行相互通信和同步。
傳統的基于儀器源測量單元(SMU)要求每次從主機的一條總線傳送一個命令,因為所有儀表共用一條總線,每次只能供一個儀表使用和通信。由于總線速度緩慢,大部分時間用于在總線和儀表之間發送指令和數據,而其他儀表經常閑置。TSP技術允許儀器自主運行主機系統的測試腳本,幾乎省去了傳輸指令的時間。一旦腳本裝入基于TSP的源測量儀表,就可以執行整個測試序列,主機只需要傳送一個命令:指示儀器運行腳本。
TSP-Link省去了連接多個源數據儀表的需求,只需一條帶寬有限的GPIB總線就可以滿足需求。有了TSP-Link技術,只需將一個源數據儀表與GPIB總線相連,其他源數據儀表則與“菊花鏈”配置(通過便宜的CAT5e交叉線連接)相連。首先,通過TSP-Link技術將其他源數據儀表連接,這些儀表的源測量單元(SMU)以第一個源數據儀表的額外源測量單元(SMU)通道形式出現,通過在第一個源數據儀表上運行腳本就可以快速訪問。
與組件源測量單元(SMU)不同,利用TSP-Link技術實現的通道擴展不限于主機的少數插槽。TSP-Link技術的無主機擴展最多允許連接32個儀表,有可能創建一個包含64個源測量單元(SMU)通道的系統。此外,由于源測量單元(SMU)是基于儀表的,可用電源數量不限于底板提供的電源。即使在基于大功率組件源測量單元(SMU)系統中,某些型號也只能提供最大84W的電源。通過接口TSP-Link可以連接32個2651A型大功率源數據儀表,這樣創建的系統就可以提供6.4kW直流電源。
TSP-Link技術提供了一流的系統擴展方法,不需要昂貴的GPIB適配器和線纜,而且通過大量減少儀表與主機之間通信數量,可以提高系統吞吐量。不過,TSP-Link技術的真實功率在于其同步運行多個測試提高吞吐量的能力。除了源測量單元(SMU),無論它們是在底板上基于組件的SMU還是在GPIB總線上基于儀表的SMU,訪問總線是受限的,主機每次必須向每個SMU發送命令。為系統增添更多的SMU意味著增加主機必須處理的器件數量,主機必須向其發送命令。由于在這些系統中,每次只能向一個SMU發送命令,因此所有測試都必須按順序進行。
再通過TSP-Link接口連接的系統中,可以對網絡中的儀表進行分組,每組擁有自己的測試腳本處理器,能夠與系統中的任何其他組并行運行腳本。分組中可以包括單一源數據表或多個源數據表,而且通常可以根據測試器件所需的SMU通道數量進行分組。例如,如果正在測試的器件是一個四端口(柵極、漏極、源極、基極)MOSFET,對晶圓進行測試,而且每個管腳需要一個SMU,那么可以將其分組為兩個雙通道源數據表,如2636A型雙通道系統源數據表。一旦確定分組而且為每組指定運行的腳本,主機就可以通過一個命令指示所有組開始并行運行。由于在內存中已經存儲每組的腳本,主機只需再次發送命令就可以進行反復測試。
在同軸連接中,中心導體和屏蔽層之間的絕緣體形成阻抗路徑(RL),它以并聯方式與待測器件(RDUT)相連。這個額外的電流路徑產生漏電流(IL),疊加到通過待測器件的電流(IDUT),得到測量電流(IM)。
假設RDUT是200GΩ,測試電壓是200V。根據歐姆定律(I = V/R)可知,預計通過待測器件的電流是200V/200GΩ = 1nA。同軸電纜絕緣體的典型阻抗大約是2TΩ/米,因此假設電纜長度是1米,那么由于電纜泄露流出的電流就是200V/2TΩ = 100pA。考慮到測量得到的電流是通過待測器件電流和漏電流之和,因此測量得到的電流是1.1nA (1nA + 100pA = 1.1nA)。因此,計算出來的電阻是181.818GΩ (200V/1.1nA = 181.818GΩ),誤差為9.1% [(200GΩ – 181.818GΩ)/200GΩ * 100% = 9.1%]。隨著電纜長度的增加,泄露電阻也隨之減小,漏電流就更大;因此,在同軸連接中因泄露帶來的誤差就更大。
相反,利用三軸連接,中心導體被內部屏蔽層和外部屏蔽層所包圍。與同軸連接相似,中心導體傳輸HI信號,外部屏蔽層傳輸LO信號。但是,內部屏蔽層有一個專門用途:傳輸保護信號。
保護信號由單位增益、低阻抗放大器驅動,它隨著HI信號電壓而變化。通過使三軸線纜內部屏蔽層電壓與中心導體電壓相同,那么中心導體與絕緣體(RL1)之間的電勢就是0V,從而杜絕了漏電流(IL)。
從上面的例子中可以看出,即使阻抗非常高的絕緣體也可以泄露較大的電流,并給測量結果帶來較大誤差。吉時利公司的源測量單元(SMU)(低電流)使用天然的三軸連接,確保從儀表到電纜端口之間不存在漏電流路徑。某些SMU使用匹配器將banana連接轉換為三軸連接。雖然這實現了從儀表到待測器件的直接連接,但儀表與適配器之間的連接仍無法得到保護,從而留下電流泄露路徑。如果儀表和適配器沒有定期清洗,那么操作員皮膚的油污就可能在端口之間形成相對低的阻抗,這將成為一個非常重要的問題。吉時利公司的源數據表使用天然的三軸連接,確保從根本上杜絕這些經常被忽視的泄露路徑。
SMU技術領先
吉時利公司目前的SMU技術領先地位是從20世紀80年代以來數十年的儀表工程設計和開發努力的結果,包括一系列廣泛的SMU相關專利:
• 利用N溝道和P溝道FET實現范圍變化(5,144,154)
• 利用電流/電壓限制實現電壓/電流源控制(5,039,934)
• 電流控制高壓固態開關(5,146,100)
• 受保護的印制電路板島(5,490,325)
• 測試接觸點連接檢查方法與電路(5,886,530)
• 遙控儀表接觸檢查(5,999,002)
• 利用二次反饋實現失靈SMU的范圍變更(具有二次反饋的源測量單元,消除范圍變更其間的瞬變) (6,262,670)
• 低噪聲電源變壓器(7,009,486)
• 自動確定范圍的電流分流(自配置電流測量) (7,276,893)
• 源測量電路(阻抗遮蓋) 7,202,676
• 大容量載荷測試(7,800,380)
• 測試儀表網絡(動態TSP-Link網絡細分(DTNS)) (7,680,621)
目前,吉時利擁有測量與測試業界技術最先進儀表SMU生產線,推出4種不同種類的源測量單元(SMU),涵蓋從臺式測試到大吞吐量生產測試等多種測試,具有最廣泛的動態范圍。